WESTMINSTER SPECIAL UTILITY DISTRICT PO BOX 819 * 409 E. HOUSTON ST. WESTMINSTER, TEXAS 75485 972-924-3282

2021 Consumer Confidence Report January 2021-December 2021

Our Drinking Water Meets or Exceeds All Federal (EPA) Drinking Requirements

Westminster SUD provides groundwater from the Woodbine Aquifer. For more information regarding this report contact Richard McCabe at (972) 924-3282. Este reporte incluye información importante sobre el agua para tomar. Para asistencia en español, favor de llamar al telafono (972)-924-3282.

For the Elderly, Infants, Cancer Patients, people with HIV/AIDS or other immune problems: Some people may be more vulnerable to contaminants in drinking water than the general public. Immuno-compromised person such as those undergoing chemotherapy treatment for cancer, those who have undergone organ transplant, those with HIV/Aids or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health providers. EPA/Centers for Disease Control and Prevention (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at 1-800-426-4791.

Definitions and Abbreviations	
Definitions and Abbreviations	The following tables contain scientific terms and measures, some of which may require explanation.
Action Level:	The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
Avg:	Regulatory compliance with some MCLs are based on running annual average of monthly samples.
Level 1 Assessment:	A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
Level 2 Assessment:	A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
Maximum Contaminant Level or MCL:	The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
Maximum Contaminant Level Goal or MCLG:	The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
Maximum residual disinfectant level or MRDL:	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
Maximum residual disinfectant level goal or MRDLG:	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
MFL	million fibers per liter (a measure of asbestos)
mrem:	millirems per year (a measure of radiation absorbed by the body)
na:	not applicable.
NTU	nephelometric turbidity units (a measure of turbidity)
pCi/L	picocuries per liter (a measure of radioactivity)

Definitions and Abbreviations

ppb:	micrograms per liter or parts per billion
ppm:	milligrams per liter or parts per million
pqq	parts per quadrillion, or picograms per liter (pg/L)
ppt	parts per trillion, or nanograms per liter (ng/L)
Treatment Technique or TT:	A required process intended to reduce the level of a contaminant in drinking water.

Information about your Drinking Water

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office.

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We are responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

Information about Source Water

TCEQ completed an assessment of your source water, and results indicate that some of our sources are susceptible to certain contaminants. The sampling requirements for your water system is based on this susceptibility and previous sample data. Any detections of these contaminants will be found in this Consumer Confidence Report. For more information on source water assessments and protection efforts at our system contact Richard McCabe 972-924-3282.

Lead and Copper	Date Sampled	MCLG	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	2021	1.3	1.3	0.24	0	ppm	N	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems

2020 Water Quality Test Results

Disinfection By-Products	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Haloacetic Acids (HAA5)	202 1	2	2 - 2	No goal for the total	60	ppb	N	By-product of drinking water disinfection.

*The value in the Highest Level or Average Detected column is the highest average of all HAA5 sample results collected at a location over a year

Total Trihalomethanes (TTHM)	2020	5	5.44 - 5.44	No goal for the total	80	ppb	N	By-product of drinking water disinfection.

*The value in the Highest Level or Average Detected column is the highest average of all TTHM sample results collected at a location over a year

Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Barium	12/09/2021	0.0031	0.0056 - 0.0056	2	2	ppm	N	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.
Chromium	12/08/2021	1.5	1.5 - 1.5	100	100	ррЬ	N	Discharge from steel and pulp mills; Erosion of natural deposits.
Fluoride	12/07/2021	1.49	1.44 - 1.44	4	4.0	ppm	N	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factors strong
Nitrate [measured as Nitrogen]	2020	0.0641	0.0131 - 0.0538	10	10	ppm	N	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.

Disinfectant Residual

A blank disinfectant residual table has been added to the CCR template, you will need to add data to the fields. Your data can be taken off the Disinfectant Level Quarterly Operating Reports (DLQOR).

Disinfectant Residual	Year	Average Level	Range of Levels Detected	MRDL	MRDLG	Unit of Measure	Violation (Y/N)	Source in Drinking Water
Chlorine (Free)	2021	1.21	0.03.6	4	4	ppm	N	Water additive used to control microbes.

	Synthetic organic contaminants including pesticides	C d	olletion ate	Highest level detected	Range of levels detected	MCLG		MCL	U	nits	Violation	Lik	ely source of ntamination
	Alachlor	02	2/14/2019	Levels lower than detect level			2		Pp	b		Ru her rov	noff from bicide used on v crops
	Atrazine	02	/14/2019	Levels lower than detect level		3	3		Ppt)		Run herl row	off from bicide used on crops
	Benzo a) Pyrene	(02/14/2019	Levels lower than detect level			200	D				Leac of wa tanks lines	hing from linings ater storage s and distribution
	Benzene		12/07/21	Levels lower than detect				5		ppb			Discharge from factories; leaching from storage tanks and landfills
	Carbon Tetrachlorid	de	12/07/21	Levels lower than detect level				5		ppb			Discharge from chemical plants and other industrial activities
	Chlorbenzene		12/07/21	Levels lower than detect level		100		100		ppb			Discharge from chemical and agriculture chemical factories
C	ichloromet han e		12/07/21	Levels lower than detect level				5		ppb			Discharge from Pharmaceutical and chemical factories
EI	thyl b en zene		12/07/21	Levels lower than detect		700		700		ррЬ			Discharge from petroleum refineries

	12/07/21	Levels lower than detect level	0-0	100	100	ppb	Discharge from rubber and plastic factories Leaching from landfills
Tetra chloroethylene	12/07/21	Levels lower than detect level			5	ppb	Discharge (rom factories and dry cleaners
Toluene	12/07/21	Levels lower than detect level		1	1	Ppm	Discharge from petroleum factories
Trichl oro ethyle n e	05/14/2019	Levels lower than detect			5		Discharge from metal degreasing sites and other factories
Vin yl Chloride	12/07/2021	Levels lower than detect level			2	ppb	Leaching from PVC piping; Discharge from plastic factories
Xyl enes	12/07/2021	Levels lower than detect level		10	10	Ppm	Discharge from petroleum factories; Discharge from chemical factories
Cis-l - Dichloroethylene	12/07/2021	Leve I s lower than detect level		70	70	ppb	Discharge from industrial chemical factories
O-Dichlorobenzene	12/07/2021	Levels lower than detection level		600		ppb	Discharge from industrial chemical factories
p-Dichlorobenzene	12/07/2021	Level lower than detect level		75	75	ppb	Discharge from industrial chemical factories
îrans-I ,2 Dîchloroethylene	12/07/21	Levels lower than detect level		100	100	ppb	Discharge Industrial chemical factories
Chlordane	12/07/20	21 I. Ivels lower that detect level	in	D	2 ppb	N Reside	ue of banned termiticide

Di (2-ethylhexyl) adipate	12/08/2021	I. Ivels lower than detect level		400	400	ppb	N	Discharge from chemicalfactories
Di(2-ehtylhexyl) phthalate	12/08/2021	I.!vels lower than detect level	0-0	D	6	ppb	N	Discharge from rubber and chemical factories
Oibr omochloropropane (DBCP)	12/08/2021	Levels lower than detect level		D	D	ppt		Runoff/leaching from soil fumigant used on soybeans. Cotmpingples ard orchards
	05/14/2019	I. Iveis lower thandetect level	0-0	2	2	ppb		Residue of banned insecticide
Ethylene dibromide	12/08/202	1 I. !vels lower than detect level		D	50	PPt	N	Dischargefrompetroleumrefinerie s
Heptachlor	12/08/2021	L I.Ivels lower than detect level	0-0		400	ppt	N	Residue of banned termiticide
Heptachlor epoxide	12/08/2023	Levels lower than detect level	0-0	D	200	ppt	N	Breakdown of heptachlor
Hexachlorobenzene	12/08/2021	Levels lower than detect level	0-0	D	1	ppb	N	Dischargefrommetalrefineriesand agricultural chemical factories
Hexachlorocyclopentadiene	12/08/2021	Levels lower than detect level	0-0	50	50	ppb		Discharge from chemical factories
Lindane	12/08/2021	llevels lower than detect level			200	PPt	N	Runoff/leaching from insecticide used on cattle. lumber. and gardens
Methoxychlor	12/08/2021	Levels lower than detect level	0-0	40	40	ррь		Runoff/leaching from insecticide used on frui G. vegetables. alfalfa. and livestock
Pentachlorophenol	12/08/2021	levels lower detect level				ppb		Discharge from wood preserving factories
Simazine	12/08/2021	levels lower than detect level		4	4	ppb		Herbacide runoff
Toxaphene	12/08/2021	levels lower than detect level	0-0	D	3	ppb		Runoff/leaching from insecticide used on cotton and cattle
Volatile Organic Contaminants	12/08/2021	Highest level	Range of levels detected	MCGL	MCL	Units	Violatio	Likely source of contamination
1.1.1 - Trichloroethane	12/08/2021	Levels lower than detect level		200	200	ppb		Discharge from metal degreasing sites and other factories
I. 1.2 - Trichloroethane	12/08/2021	Levels lower than detect level	0-0	3	5	ppb		Discharge from industrial chemical factories
. 1 - Oichloroethylene	12/08/2021	le vels lower than detect		7	7	ppb		Discharge from industrial chemical factories
.2,4- Trichlorobenzene	12/08/2021	L!vels ower than detect level	0-0	70	70	ppb	N	Discharge from textile-finishing factories

1.2 Oichloroethane	12/08/2021	Levels lower than detect level					Discharge from industrial chemical
1.2• Oichloropropane	12/08/2021	Levels lower than detect level	a	5	ррЪ	N	Discharge from industrial chemical factories

Westminster Special Utility DistrictLocation

- - ---

Status

Westminster SUD Well locations

108 Georgia Avenue Groundwater Well #1 Groundwater

Well #2 411 E Houston St 8066 FM 2862 Groundwater

Well#3

Well #4 15831 FM 3133 Groundwater

Further details about sources and source-water assessments are available in Drinking Water Watch at the following URL:http//duw.tceq.texas.gov/DWW